>软件开发>应用软件>NILabVIEW项目,沈阳空气动力研究.. 免费发布应用软件信息
广告

NILabVIEW项目,沈阳空气动力研究所利用LabVIEW开发

更新时间:2022-11-01 06:52:08 信息编号:0d2jimd9g2e8a5
NILabVIEW项目,沈阳空气动力研究所利用LabVIEW开发
  • 面议

  • 西安中航飞机研究院,LabVIEW开发

13691203761 010-81747718

分享

详情介绍

服务项目
LabVIEW开发,LabVIEW项目,LabVIEW编程,LabVIEW解密
面向地区
全国

NILabVIEW项目,沈阳空气动力研究所利用LabVIEW开发

利用labview为风机系统控制软件测试开发硬件在环仿真器
概述:使用NI TestStand、LabVIEW实时模块、LabVIEW FPGA模块和NI PXI平台创建用于西门子风机控制系统的嵌入式控制软件发布的硬件在环(HIL)测试系统。
由于我们的软件定期发布控制器的软件新版本,我们需要测试软件,验证这些软件将会在风力站的环境下可靠执行。在每个软件发布时,我们在现场使用软件之前,需要先在工厂接受性能测试。这个全新的测试系统让我们能够自动化这个流程。
从过去系统中学到的经验
我们之前的测试系统是在10年前开发的,它基于另一个软件环境和PCI数据采集板卡。测试系统体系结构和性能无法满足我们对全新的测试时间和扩展性的需求。维护也十分困难,并且不能自动化完成有效的测试。它还缺乏对测试结果自动生成文档和测试的可跟踪性,不提供所需的远程控制功能。此外,过去的HIL测试环境不支持多核处理,因此我们无法利用新多核处理器的计算能力。
未来系统的决定
在评价可用的技术之后,我们选择了LabVIEW软件和基于PXI的实时现场可编程门阵列(FPGA)硬件,开发我们全新的测试解决方案。我们相信这个技术会带来灵活性和可扩展性,满足我们未来的技术需求。同时,我们从NI提供的服务与产品质量中,建立了对解决方案的信心。
由于我们在测试内部系统中并没有深入的开发经验,我们将开发外包给位于丹麦的CIM Industrial Systems A/S公司。我们选择CIM Industrial Systems A/S是因为他们具有测试工程能力和欧洲多的LabVIEW认证架构师。CIM成功开发了这个项目,我们对得到的服务感到十分高兴。
灵活的实时测试系统体系结构
全新的测试系统通过在LabVIEW实时模块系统中,运行组件仿真模型,仿真实时风机组件的行为,为被测系统提供仿真信号。

图2:西门子风力测试系统体系结构
主计算机包含直观的LabVIEW用户图形界面,能够方便地通过在面板中移动组件进行调整。Windows操作系统应用程序与两个不兼容实时任务的外部仪器进行通信。

图3:主计算机具有直观的LabVIEW用户图形界面。
在主计算机上的软件通过以太网与位于PXI-1042Q机箱中的LabVIEW实时目标进行通信。LabVIEW实时模块运行通常包含20到55个并行执行的仿真DLL的仿真软件。这个解决方案能够调用使用几乎所有建模环境开发的用户模型,例如NI LabVIEW控制设计与仿真模块、The MathWorks, Inc. Simulink®软件或是ANSI C代码。我们仿真循环的典型执行速率是24 ms,为满足未来处理能力扩展需求提供了大量裕量。
用于定制风力涡轮协议和传感器仿真的FPGA板卡
由于缺少现有标准,在风机中使用的定制通信协议很多。使用基于NI PXI-7833R FPGA多功能RIO模块和LabVIEW FPGA模块,我们能够与这些协议进行通信并仿真。除了协议交互之外,我们使用这个设备仿真磁性传感器和三相电压电流仿真。其他的FPGA板卡与NI 9151R系列扩展机箱连接,进一步提高了系统通道数。
全新测试系统的优点
相比上一代解决方案有许多优点。由于系统的模块化特性,进行改进、修改和进一步开发十分简单。被测系统可以在无需测试系统体系结构任何变化的情况下进行快速替换。远程控制功能和系统的简单复制让我们能够在需要进行扩展时,灵活地将系统复制到其他站点。
仿真器为环境提供了在实验室中验证新软件发布和测试特殊解决方案的能力。它还给了我们测试我们正在研究的新技术和新概念的工具。

利用labview为太阳能车开发遥测系统
概述:使用1组NI CompactRIO控制器与8槽式机箱,监控车辆的电压、电流、温度,与速度,再透过2.4 GHz数据机,将资讯无线传送至太阳能车后方的追踪车辆。

遥测(Telemetry)
WSC 与其他太阳能车赛不同之处,乃是团队完成达尔文(Darwin) 到阿德雷得(Adelaide) 共3,000 公里的距离;亦表示比赛期间可能随时发生问题,甚至影响车辆能否完成赛事。使用CompactRIO 可重设机箱与NI LabVIEW 软体,我们开发的摇测系统可监控、记录,并传输资料,以随时反应太阳能电池的状态(如上图1 )。受监控的资料可触发警示,在问题发生之前避免之;因此该笔即时资料可协助团对随时拟定佳对策,以缩短除错时间。同时系统亦将监控并记录驾驶的动作,以利赛后分析。
研发
虽然太阳能车本身的机械与电力资料,即为搜集与分析要点,但由于电子资料才是打造车辆的关键比赛要素,所以我们额外注重电子资料。我们所搜集的资料,包含设计阶段的电池与太阳能电池,还有电池的体积与其效能曲线均有。在赛程中搜集到的即时资料,有助于我们佳化车辆的性能,亦可比较车辆实际规格与设计规格之间的差异。另外,策略团队则使用此资料搭配天气预测,以计算出理想的赛程速度。我们并透过CompactRIO 内建记忆体而记录所有资料,以利赛后分析并供未来改进之用。
使用CompactRIO 与可重设机箱
因为CompactRIO能在可客制化输入通道上整合即时资料撷取功能,亦可记录并传输资料,所以我们选用CompactRIO。而NI cRIO-9104 - 8槽式机箱可安装任何必要模组,以满足我们的监控需求。透过多款NI模组,我们可随着专案发展而调整机箱,并着重于太阳能车的不同面向。NI cRIO-9014 - Real-Time控制器另内建记忆体与多种I/O,可提供弹性介面与次要的资料储存媒体。
我们的客制化机箱包含1组SEA cRIO-GPS+模组,可即时提供车辆位置;1组NI 9870序列介面模组,具备RS232介面,可撷取电池监控系统的资料;1组NI 9401数位I /O模组,可透过马达控制器端点取得车辆速度,并输出资料;4个NI 9219类比I/O模组,可监控火星塞、刹车、电流,与太阳能电池阵列的电压;还有1个NI 9211热电偶模组,可感测车辆周围的温度。我们另透过NI 9219通用类比I/O模组,以高度与解析度监控多种资料,包含电压、电流、温度,与电阻。
利用LabVIEW FPGA Module 进行程式设计
使用LabVIEW FPGA Module即可迅速且轻松设计此系统。另外,Express VI具备捷径功能,可让使用者迅速变更程式以满足需求。此外,我们在启动CompactRIO时随即执行程式,让整个系统成为无线架构,而不需实际接至系统再手动开始程式。我们虽属业余团队且程式设计经验有限,但直觉且图形化的图示与接线,都让我们能加快程式设计的速度且趣味盎然。因为并非所有模组都支援CompactRIO的Scan Mode,所以我们透过FPGA程式设计模式,整合了共8个模组。我们检视由追踪车即时搜集的资料,再根据公式化的程式拟定比赛策略(图2)。

图2. 追踪车上的即时资料
应用
在专案设计阶段,我们使用CompactRIO 控制器记录太阳电池的效能,以建立电池于不同气候条件下的效能曲线。我们连接电池与系统,以了解不同温度下的放电情形,并于每次试驾时记录驾驶的动作,以协助团队判别驾驶行动是否正确。
因为车辆完全由太阳能供电,我们将电子设备的耗电量降至低,让马达获得大部分的电力,才能完成赛程。客制化的8 槽式机箱可撷取如GPS、电池资讯、太阳能电池状态、马达效能,与驾驶动作的资料。接着将所有资料储存于cRIO-9014 – Real-Time 控制器内建的2 GB 记忆体,同时透过LabVIEW VI 将资料格式化为字串,再透过低耗电的2.4 GHz 无线电数据机,将资料传输到追踪车上(图3)。

图3. 遥测系统的程式区块图

Real-Time 控制器具备足够的储存空间,追踪车上亦装备1 组笔记型电脑。策略团队在追踪车上分析资料,并参考如道路、驾驶,与天候状况的外部因素,以决定车行速度。
完成所有试驾之后,我们接着分析资料并微调太阳能车的机械元件,如调整车轮、转向灵敏度、悬吊,与胎压,以提升太阳能车的性能。透过LabVIEW,我们可模拟澳洲所有的可能天候状况,这样我们更能有效评估太阳能阵列所提供的电力与功率。此外,我们也会在赛事过后分析所得的资料,以进一步强化新一代的太阳能车。
结论
因为我们在这个专案使用即时监测系统,且太阳能车所能提供的资料范围太过广泛,所以我们初并无法确定主要的焦点为何。随着专案的进展,我们于竞赛与设计阶段,均透过CompactRIO 绘制出电池在不同温度下的放电率图表,并借以了解自制太阳能矩阵的效能。本专案从设计、实际比赛,到后续分析的所有阶段,CompactRIO 实在助益良多。我们成功使用CompactRIO 为太阳能车开发了监控系统,且针对未来的更多太阳能专案,我们亦准备继续使用相同的机箱与控制器。

CompactRIO模块
涡轮增压器性能中重要的变量包含温度、压力和转速。系统组件包含多个NI C系列模块,包括NI 9217 RTD模拟输入模块测量电阻温度传感器(RTD)温度、NI 9211热电偶输入模块测量热电偶温度、NI 9203数据采集模块测量压力和电流、NI 9423漏极数字输入模块测量转速。此外,还采用了NI 9265同步更新模拟输出模块作为系统和模拟输出值的外部接口,NI 9425漏极数字输入模块和NI 9476源数字输出模块用于数字I/O值。检测系统由系统操作员通过用户界面进行控制。监视外部系统使得用户可以控制和管理整个系统。
结论
涡轮增压器是车辆引擎的重要部分,其性能直接影响整个引擎的性能。对涡轮增压器性能进行适当的测试是确保终产品质量的关键步骤。以前的PLC系统无法提供所需的精度。使用基于CompactRIO的全新检测系统替换PLC系统节省了空间,并且提供了更高的精度、更高的分辨率和更好的性能。此外,由于系统开发员熟悉CompactRIO的开发方法,可以在短时间内让系统开始运行,这样节省了时间和开发资源。

使用LabVIEW FPGA和CompactRIO开发伺服控制系统
概述:利用NI LabVIEW FPGA 模块和CompactRIO 系统开发出世界上台在连续旋转式磁盘上进行三维全息数字数据存储的伺服控制系统。

全息数字数据存储(Holographic digital data storage,简称HDDS)技术是光学存储领域里有前景的新兴技术之一。传统的数据存储技术,是把单的比特信息存储为介质表面的磁或光变量,正在接近其物理的极限。然而,全息存储技术可以使数据的传输速率加速到10 亿比特每秒,把访问时间降低到几十微秒,同时将数据的存储密度增加到理论的大值,即1 万亿比特每立方厘米。  
通过在存储介质的整个三维空间上编码数据,并且利用称为页的大容量并行存储块来进行记录和恢复,全息数据存储技术突破了传统二维技术(如DVD)的限制。

利用CompactRIO 对Daewoo HDDS 系统进行原型验证
我们的H D D S 原型包括两个主要的子系统:一个基于N ICompactRIO三百万门的FPGA 系列模块的电光运动控制系统和一个基于Xilinx 公司八百万门的FPGA 电路板的视频解码系统。CompactRIO 系统控制着一个线性电机、一个步进电机、一个电流镜和一个CMOS 相机。每一个运动控制环都要求的控制,所以我们利用反馈信号来控制和检测数据。不同于传统的计算型电路板,CompactRIO 系统使我们可以利用NI 公司的LabVIEWFPGA模块来定制脉冲发生器的时序,其精度可达到一个FPGA时钟周期。为了避免滑动,我们通过创建定制的用于加速和减速的数学函数,开发了复杂的电机控制算法。我们为三种类型的电机分别设计了驱动电路,并把它们连接到CompactRIO 的输入/ 输出模块上。除了运动控制,CompactRIO 还与用于视频解码的FPGA 电路板通信,该电路板是使用我们自有的用于视频恢复和CMOS相机控制的信号处理技术开发的。前端MPEG解码器积累在缓存中的数据量随速度变化很大,CompactRIO 还通过检查其变化来控制数据的传输速率。

使用LabVIEW 与DAQ 监控人体于动态平台上的摆动
概述:使用NI LabVIEW软体搭配NI资料撷取(DAQ)硬体建构平台,其表面具备122组应力感测电阻器(FSR)并能以200 Hz进行取样,以量测人体摆动与平衡的控制情形。

人体即使在直立时,亦需随时保持着稳定性。人体整合多种机制,才能避免身体在静、动态的条件下跌倒。测力板(Force platform) 与Stabilogram 均为量测、量化人体平衡度的标准。另根据时间概念而搜集压力中心(COP),以呈现姿势控制的结果。基本上是以表面支撑人体中心,再垂直投射相关应力。主机电脑将根据FSR 的讯号而执行一系列的计算作业,以取得COP (如图1)。

图1. 负责计算人体足部摆动的程式图区块
大多数的姿势与平衡计量技术,均是主动操作姿势或平衡状态,再计算出人体的反应。在此系统中,我们是让人体于不稳定的支撑表面上保持平衡,达到自我反应的效果。若让人体站在可移动的支撑表面上,亦可达到相同的变数。针对任何测试点,我们的平台可达到不同方向的平衡紊乱(如图2)。
在衔接仪器之后,此平台可随时追踪人体COP 的移动,再显示各种状态下的人体稳定程度。此时如BOSU Balance Trainer 的动态表面就极其重要,可完整补偿姿势控制器统,而模拟动态条件。与仅能模拟静态条件的静态平台相较,动态表面更能呈现病理学方面的问题。
仪器控制
此坚固平台的直径为635 mm,非平面的圆顶直到动态平台之处均为柔软材质(如图2)。另有薄薄一层FSR 排列为阵列,固定于平台之上。我们另于平台之上安装感测器,以捕捉不同的站立姿势,并达到更大的仪控面积(如图2)。此系统好能尽量减少各种限制。
每次进行EO 实验,COP 明显均集中在同一区域。但若进入EC 实验,受测人员的COP 分布就会产生的变化。结果显示,所有受测人员若要在不平衡的表面上达到平衡,将极度依赖自己生理上的本体感受器(Proprioceptor) 告知大脑目前状态,也解释了COP 分配区域大幅增多的原因。
一项对EC 实验的有趣观察指出,若受测人员对生活形态抱持轻微的积极态度,则摇摆的程度较大;若对生活形态抱持适当的积极态度,其摇摆程度亦较小。不同的生活形态亦反应出COP 的分配范围。与适当积极态度的受测人员相较,较不积极的人其COP 分配范围亦较大。
若受测人员已熟悉了Balance Trainer 动态平台,亦将更能控制COP 的分配范围,亦能进一步控制自己的本体感受器。在实际撷取资料之前,这些受测人员已经实际使用动态平台达7 天。
结论
总的来说,我们用LabVIEW 与DAQ 建构动态平图,可了解人体在不稳定表面上的平衡状态。仪控式的动态平台显示了下列特性:
• 测得受测人员的姿势控制与摆动情形若受测人员的COP分配范围较大,也耗上更多力气才能达到平衡
• 受测人员若对生活抱持积极的态度,也展现了较佳的姿势控制能力
• 在切断视觉之后,人体会立刻切换为本体感受器,通知身体是否在特定方向的摆动幅度过大
• 受测人员在熟悉了平台之后,亦将缩小其COP分配范围综合以上结论,受测人员只要能控制自己的本体感受器,就越能在非平衡的表面上让自己保持平衡。

相关推荐产品

留言板

  • LabVIEW开发LabVIEW项目LabVIEW编程LabVIEW解密西安中航飞机研究院
  • 价格商品详情商品参数其它
  • 提交留言即代表同意更多商家联系我
北京瀚文网星科技有限责任公司为你提供的“NILabVIEW项目,沈阳空气动力研究所利用LabVIEW开发”详细介绍,包括西安中航飞机研究院价格、型号、图片、厂家等信息。如有需要,请拨打电话:13691203761。不是你想要的产品?点击发布采购需求,让供应商主动联系你。
“NILabVIEW项目,沈阳空气动力研究所利用LabVIEW开发”信息由发布人自行提供,其真实性、合法性由发布人负责。交易汇款需谨慎,请注意调查核实。