>软件开发>应用软件>河北有经验的LabVIEW开发编程,La.. 免费发布应用软件信息
广告

河北有经验的LabVIEW开发编程,LabVIEW解密

更新时间:2022-11-01 06:52:06 信息编号:2a2j2orfo14819
河北有经验的LabVIEW开发编程,LabVIEW解密
  • 面议

  • 西安中航飞机研究院,LabVIEW开发

13691203761 010-81747718

分享

详情介绍

服务项目
LabVIEW开发,LabVIEW项目,LabVIEW编程,LabVIEW解密
面向地区
全国

河北有经验的LabVIEW开发编程,LabVIEW解密

利用labview为太阳能车开发遥测系统
概述:使用1组NI CompactRIO控制器与8槽式机箱,监控车辆的电压、电流、温度,与速度,再透过2.4 GHz数据机,将资讯无线传送至太阳能车后方的追踪车辆。

遥测(Telemetry)
WSC 与其他太阳能车赛不同之处,乃是团队完成达尔文(Darwin) 到阿德雷得(Adelaide) 共3,000 公里的距离;亦表示比赛期间可能随时发生问题,甚至影响车辆能否完成赛事。使用CompactRIO 可重设机箱与NI LabVIEW 软体,我们开发的摇测系统可监控、记录,并传输资料,以随时反应太阳能电池的状态(如上图1 )。受监控的资料可触发警示,在问题发生之前避免之;因此该笔即时资料可协助团对随时拟定佳对策,以缩短除错时间。同时系统亦将监控并记录驾驶的动作,以利赛后分析。
研发
虽然太阳能车本身的机械与电力资料,即为搜集与分析要点,但由于电子资料才是打造车辆的关键比赛要素,所以我们额外注重电子资料。我们所搜集的资料,包含设计阶段的电池与太阳能电池,还有电池的体积与其效能曲线均有。在赛程中搜集到的即时资料,有助于我们佳化车辆的性能,亦可比较车辆实际规格与设计规格之间的差异。另外,策略团队则使用此资料搭配天气预测,以计算出理想的赛程速度。我们并透过CompactRIO 内建记忆体而记录所有资料,以利赛后分析并供未来改进之用。
使用CompactRIO 与可重设机箱
因为CompactRIO能在可客制化输入通道上整合即时资料撷取功能,亦可记录并传输资料,所以我们选用CompactRIO。而NI cRIO-9104 - 8槽式机箱可安装任何必要模组,以满足我们的监控需求。透过多款NI模组,我们可随着专案发展而调整机箱,并着重于太阳能车的不同面向。NI cRIO-9014 - Real-Time控制器另内建记忆体与多种I/O,可提供弹性介面与次要的资料储存媒体。
我们的客制化机箱包含1组SEA cRIO-GPS+模组,可即时提供车辆位置;1组NI 9870序列介面模组,具备RS232介面,可撷取电池监控系统的资料;1组NI 9401数位I /O模组,可透过马达控制器端点取得车辆速度,并输出资料;4个NI 9219类比I/O模组,可监控火星塞、刹车、电流,与太阳能电池阵列的电压;还有1个NI 9211热电偶模组,可感测车辆周围的温度。我们另透过NI 9219通用类比I/O模组,以高度与解析度监控多种资料,包含电压、电流、温度,与电阻。
利用LabVIEW FPGA Module 进行程式设计
使用LabVIEW FPGA Module即可迅速且轻松设计此系统。另外,Express VI具备捷径功能,可让使用者迅速变更程式以满足需求。此外,我们在启动CompactRIO时随即执行程式,让整个系统成为无线架构,而不需实际接至系统再手动开始程式。我们虽属业余团队且程式设计经验有限,但直觉且图形化的图示与接线,都让我们能加快程式设计的速度且趣味盎然。因为并非所有模组都支援CompactRIO的Scan Mode,所以我们透过FPGA程式设计模式,整合了共8个模组。我们检视由追踪车即时搜集的资料,再根据公式化的程式拟定比赛策略(图2)。

图2. 追踪车上的即时资料
应用
在专案设计阶段,我们使用CompactRIO 控制器记录太阳电池的效能,以建立电池于不同气候条件下的效能曲线。我们连接电池与系统,以了解不同温度下的放电情形,并于每次试驾时记录驾驶的动作,以协助团队判别驾驶行动是否正确。
因为车辆完全由太阳能供电,我们将电子设备的耗电量降至低,让马达获得大部分的电力,才能完成赛程。客制化的8 槽式机箱可撷取如GPS、电池资讯、太阳能电池状态、马达效能,与驾驶动作的资料。接着将所有资料储存于cRIO-9014 – Real-Time 控制器内建的2 GB 记忆体,同时透过LabVIEW VI 将资料格式化为字串,再透过低耗电的2.4 GHz 无线电数据机,将资料传输到追踪车上(图3)。

图3. 遥测系统的程式区块图

Real-Time 控制器具备足够的储存空间,追踪车上亦装备1 组笔记型电脑。策略团队在追踪车上分析资料,并参考如道路、驾驶,与天候状况的外部因素,以决定车行速度。
完成所有试驾之后,我们接着分析资料并微调太阳能车的机械元件,如调整车轮、转向灵敏度、悬吊,与胎压,以提升太阳能车的性能。透过LabVIEW,我们可模拟澳洲所有的可能天候状况,这样我们更能有效评估太阳能阵列所提供的电力与功率。此外,我们也会在赛事过后分析所得的资料,以进一步强化新一代的太阳能车。
结论
因为我们在这个专案使用即时监测系统,且太阳能车所能提供的资料范围太过广泛,所以我们初并无法确定主要的焦点为何。随着专案的进展,我们于竞赛与设计阶段,均透过CompactRIO 绘制出电池在不同温度下的放电率图表,并借以了解自制太阳能矩阵的效能。本专案从设计、实际比赛,到后续分析的所有阶段,CompactRIO 实在助益良多。我们成功使用CompactRIO 为太阳能车开发了监控系统,且针对未来的更多太阳能专案,我们亦准备继续使用相同的机箱与控制器。

利用下一代医学成像技术以及PXI模块化仪器系统与NI LabVIEW进行进展性癌症研究
概述:使用OCT技术与授予专利的光源技术,并通过带有32个PXI-5105数字化仪的256同步通道的高速(60Ms/s)数据采集系统予以实现。

OCT是一种非入侵式成像技术,它提供半透明或不透明的材料的表下、断层图像。OCT图像使我们可以以与一些显微镜相近的精度可视化地展现组织或其他物体。OCT越来越受到研究人员的关注,因为它具有比核磁共振成像(MRI)和正电子发射型断层成像(PET)等其他成像技术高很多的分辨率。此外,该方法不要求我们作其他准备,而且对于患者非常安全,因为我们使用的激光输出能量非常之低并且无需使用电离辐射。
OCT利用一个低功耗光源及其相应的光反射以创建图像,该方法类似于超声,但我们监测的是光波,而不是声波。当我们将一束光投射在一个样品上,其中大部分光线被散射,但仍有小部分光线以平行光的形式反射,这些平行光可以被检测到并用于创建图像。
别系统概览
我们的任务便是利用光学解复用器创建一个高速傅立叶域OCT系统,以支持来自以192.2 THz为中心频率、频率间隔为25.0 GHz的宽带入射光(波长为1559.8 nm)的256个窄频带的分隔。频谱分离使得PXI-5105数字化仪的256个高速模数转换器(ADC)通道能以60 MS/s的采样率进行数据采集,并对所有的频带进行同步检测。
我们的系统包含32块8通道的PXI-5105数字化仪,它们分布在三个18槽的NI PXI-1045机箱上。我们利用NI PXI-6652定时与同步模块和NI-TClk同步技术,实现不同机箱上的数字化仪的同步,它提供了数十皮秒精度级的通道间相位同步性。我们选用PXI-5105是因为其高通道密度——每块板卡八个输入通道,这样使得256个高速通道的系统保持较小的外形尺寸。当我们完成数据采集之后,我们利用LabVIEW进行数据处理和可视化展示。
利用傅立叶域OCT系统中的光解复用器充当频谱分析仪,实现了每秒六千万次轴向扫描的OCT成像。利用一台共振扫描装置进行帧速率为16 kHz、每帧1400 A-线和3毫米深度范围的左右扫查,我们的OCT成像展示了23 µm的精度。
系统深度描述
在我们的系统中,所采用的光源是一个宽带超发光二极管(SLD,由NTT电子提供原型产品)。我们利用一个半导体光放大器(SOA,来自COVEGA公司,BOA-1004型)放大该SLD的输出光信号,并利用耦合器(CP1)将其等分导入到样本支路和参考支路。我们调整SOA1的输出光信号强度,使得样本信号的功率为9 mW,以满足ANSI的安全限制。我们的系统利用一个准直透镜(L1)和一个物镜(L2),将样本支路光信号导入到采样点(S)。我们使用一个共振扫描装置(RS、光电产品、SC-30型)和一个电镜(G,剑桥技术出品,6210型)扫描采样点的光束。我们的系统利用光照明光学收集来自采样点的后向散射或后向发射的光信号,并利用一个光循环装置C1将其导入至SOA2(来自COVEGA公司,BOA-1004型)。我们通过一个耦合器CP2(耦合比为50:50)整合SOA2的输出信号与参考光信号。该参考支路由光循环装置C2、准直透镜L3和参考反射镜RM组成。
我们的系统利用两只光解复用器(OD1与OD2)分离CP2的输出信号,以实现平衡检测。它利用平衡图片接收装置(来自New Focus公司,2117型)——共有256个图片接收装置,检测来自这两个OD的具有相同光频率的输出信号。它利用前述快速多通道ADC系统的32块PXI-5105数字化仪,检测来自图片接收装置的输出信号。所采集数据在单次采集过程中存储于数字化仪的板载深度存储器中,然后传输至计算机供分析。
就同步检测干涉频谱而言,OD-OCT与SD-OCT相似。其差别在于OD-OCT同时在不同频率以数据采集速率检测整个干涉图谱,而不是像SD-OCT那样——在某个时间跨度内累计输入到CCD检测装置中。因而,它根据数据采集系统的数据采集速率——在现有系统中该速率高达60 MHz——来确定轴向扫描速率。共振扫描装置的16 kHz速率确定了帧速率。我们仅使用了一个扫描方向进行数据采集(50%的占空比),从而得到每帧的采样时间为31.25 μs。该系统在每帧中获得1875次轴向扫描;然而,由于共振扫描装置的左右扫查呈高度非线性,我们仅使用了1400次轴向扫描,舍弃了475次轴向扫描。
研究结果
我们将动态范围定义为点扩散函数(PSF)的峰值与样本支路畅通时的背景噪声间的比值。我们根据结果估计,动态范围在各种深度下均约为40 dB并随着深度加深略有下降。OD-OCT的一个技术优势在于AWG的每个通道所检测的频带宽度小于25 GHz的频率间距。40 dB的动态范围基本足够生物组织的测量。
我们利用中性密度滤光镜将发射光衰减了39.3 dB。粗实曲线是在阻塞样本光信号的情况下测量所得的背景噪声。由这些数值确定的敏感度按照右手侧的垂直刻度标示。
图像的渗入深度约1毫米,浅于通常利用SS-OCT或SD-OCT获得的2毫米渗入深度。这是由低敏感度决定的。为得到一幅3D图像,需要大量的OCT截面。受限于存储器的大小,我们把采样率降至10 MHz。

使labview用于电厂保护的发电机综合数据采集与分析装置
概述:采用NI 的LabVIEW 和CompactRIO 硬件平台实现了水轮发电机的数据采集及分析装置各个装置通过以太网将相应的数据和故障分析的结果传输到监控中的服务器上。

应用方案:
水轮发电机侧装配一套数据采集及分析装置,各个装置通过以太网将相应的数据和故障分析的结果传输到监控中的服务器上,整个系统主要包括三个部分:
1. 采用工业控制计算机作为,监控中心的存储以及监控服务器
2. 采用NI 公司的实时嵌入式处理器、FPGA模块、采集卡组成高速数据采集及分析装置
3. 采用相应的传感器对相关的电测量和非电量进行采集,通过前端信号处理模块处理之后送到高速数据采集及分析装置的采集卡,以作为后续存储与分析的信号输入。


投放市场的必要性
发电厂的机组故障录波器基本上都没有使用,老式的故障录波器也正是要更新换代的时候,而且随着国民经济的快速增长,电力的需求越来越紧张,电网的建设步伐也在加快,电力系统故障录波器作为系统事故分析不可缺少的组成部分,市场的需求正在日益的增加。
使用NI 的硬件提高开发速度
CompactRIO硬件的高可靠性,实时处理器的,以及FPGA的并行高速计算能力以及LabVIEW的信号处理能力和便捷开发为本装置的研制提供了一个比较合适的软硬件平台。

使用 NI TestStand、LabVIEW 与 PXI 开发植入式助听器测试系统
概述:使用 NI LabVIEW、PXI 电脑式仪器与 NI TestStand,建立一套自动化测试系统,能以 70% 的开发时间提供更多更灵活的功能。
我们针对内部研发使用了新的 PXI 架构功能测试系统,从电路板到组装完成的产品,测试了 8 种不同的应用。我们也使用这套系统在公司内部以及不同的代工厂中进行生产测试。系统需要执行众多的动作,包括捕捉、储存与分析 5 MHz 信号的波形,将电力与资料穿越皮肤,传送到植入物中。我们使用声音测量、电压参数测量、在不同负载情况下的电流测量,同时通过数字 I / O及 GPIB与外部设备沟通。我们使用 USB 通讯设备来控制定制电路板上的继电器、开关与其他的硬件。系统也能够准确调整共振电路并测试 I2C 通讯。系统会自动生成测试报告,同时通过网络进行存贮,供日后统计分析之用。

CompactRIO模块
涡轮增压器性能中重要的变量包含温度、压力和转速。系统组件包含多个NI C系列模块,包括NI 9217 RTD模拟输入模块测量电阻温度传感器(RTD)温度、NI 9211热电偶输入模块测量热电偶温度、NI 9203数据采集模块测量压力和电流、NI 9423漏极数字输入模块测量转速。此外,还采用了NI 9265同步更新模拟输出模块作为系统和模拟输出值的外部接口,NI 9425漏极数字输入模块和NI 9476源数字输出模块用于数字I/O值。检测系统由系统操作员通过用户界面进行控制。监视外部系统使得用户可以控制和管理整个系统。
结论
涡轮增压器是车辆引擎的重要部分,其性能直接影响整个引擎的性能。对涡轮增压器性能进行适当的测试是确保终产品质量的关键步骤。以前的PLC系统无法提供所需的精度。使用基于CompactRIO的全新检测系统替换PLC系统节省了空间,并且提供了更高的精度、更高的分辨率和更好的性能。此外,由于系统开发员熟悉CompactRIO的开发方法,可以在短时间内让系统开始运行,这样节省了时间和开发资源。
每次进行EO 实验,COP 明显均集中在同一区域。但若进入EC 实验,受测人员的COP 分布就会产生的变化。结果显示,所有受测人员若要在不平衡的表面上达到平衡,将极度依赖自己生理上的本体感受器(Proprioceptor) 告知大脑目前状态,也解释了COP 分配区域大幅增多的原因。
一项对EC 实验的有趣观察指出,若受测人员对生活形态抱持轻微的积极态度,则摇摆的程度较大;若对生活形态抱持适当的积极态度,其摇摆程度亦较小。不同的生活形态亦反应出COP 的分配范围。与适当积极态度的受测人员相较,较不积极的人其COP 分配范围亦较大。
若受测人员已熟悉了Balance Trainer 动态平台,亦将更能控制COP 的分配范围,亦能进一步控制自己的本体感受器。在实际撷取资料之前,这些受测人员已经实际使用动态平台达7 天。
结论
总的来说,我们用LabVIEW 与DAQ 建构动态平图,可了解人体在不稳定表面上的平衡状态。仪控式的动态平台显示了下列特性:
• 测得受测人员的姿势控制与摆动情形若受测人员的COP分配范围较大,也耗上更多力气才能达到平衡
• 受测人员若对生活抱持积极的态度,也展现了较佳的姿势控制能力
• 在切断视觉之后,人体会立刻切换为本体感受器,通知身体是否在特定方向的摆动幅度过大
• 受测人员在熟悉了平台之后,亦将缩小其COP分配范围综合以上结论,受测人员只要能控制自己的本体感受器,就越能在非平衡的表面上让自己保持平衡。
使用LabVIEW测量内燃机气缸压力
概述:基于LabVIEW软件控制的DAQ板卡,开发出OPTIMIZER——一款灵活、经济的基于PC的气缸压力测量分析系统。

背景
内燃机的性能,取决于许多因素。对于给定压缩比的情况,佳马力和发动机扭矩会出现在以下情况:
 每个气缸的进气口和进气阀的进气量均达到大
 燃料/空气处于适当比例
 燃料和空气充分混合
 调整点火提前量,避免初始爆震
由于是燃料/空气混合物的燃烧产生的压力产生了发动机的扭矩和动力,所以在发动机研发中重要的检查参数就是在压缩和做功冲程中的气缸压力大小及其定时。进气歧管的台架测试是在恒流情况下记录一定压降下的气流情况。但当安装在发动机上后,进气歧管的气流就变成了受活塞运动、进气阀面积、气阀定时和重叠时间以及流道形状影响的非恒流过程。这些参数的共同作用,往往会导致多缸发动机不同气缸进气差异。
优化发动机性能的步就是设计进气歧管和气阀系以大限度的给每一个气缸提供等量空气。对于给定的压缩比和进气口温度,操作者可以通过测量点火之前压缩冲程中的气缸压力来获得进气信息。因为油气混合物的燃烧是一个复杂的反应过程,牵涉到很多气缸的几何因素以及其它因素,如油气混合情况、汽油辛烷值、燃料当量比、发动机温度、空气温度和湿度,以及点火时间等—— 调整这些参数,以获得佳的性能,将是一个相当大的挑战。
通过观察气缸压力测量值以及峰值压力相对活塞顶死中心(Top-dead-center, TDC)的位置,发动机技术人员可以迅速将发动机调校到佳性能。由燃烧质量分数可见,对于大多数传统发动机而言,如果峰值压力出现在TDC之后12到15度,并且燃烧发生在TDC附近的等容阶段时,发动机将表现出佳性能。但在给定压缩比和燃油辛烷值情况下,为了达到佳性能所采取的点火提前可能会因为严重的火花爆击现象而导致气阀过热。因此,在性能优化过程中,发动机技术人员需要检测TDC之后的10和40度之间火花爆击的气缸压力。如果检测到爆震,点火提前取消,以避免活塞受损。
使用LabVIEW和PXI定位飞行过程中飞机的噪声源
概述:基于NI LabVIEW软件搭建一个应用程序,并使用NI PXI硬件从布置在跑道上的相位麦克风阵列采集数据。

研究客机上的噪声源
为了能开发出更为安静的客机,我们定位所有的噪声源,以加强我们对噪音生成原理的认识。在开发一架飞机时,我们可以通过数值分析和模型测试预测噪音等级。然而,实际飞机噪音的属性和特性只能在实际飞行测试中才能获得。利用声音波束成形技术来定位噪音源是一种有效可行的方法。波束成形是一种使用定位噪声源的方法,同时能获得噪声源的振幅。虽然我们在JAXA项目上小型模型飞机的风洞测试和飞行测试中已经发展并改进了这项技术,但还未曾将这项技术应用于实际飞行的飞机中。2009年,我们拥有了一架小型Mitsubishi MU-300 Diamond商务机。2010年,我们开始在跑道上设置了相位麦克风阵列,通过噪声源定位测量来验证我们现有的技术,并找到可以提高的空间。
相位麦克风阵列的测量
相位阵列包含了许多麦克风,分布在一个大直径的范围上。利用噪声源的声波到达每个麦克风时间的微小差别,我们可以估算出每个噪声源的位置和强度。在这个测试中,我们设计了相位阵列来辨识飞行于120米高度的飞机上两个相距4米的1kHz音频信号。这个相控阵列包含了99个麦克风,分布在一个直径30米的圆形区域上。
飞行中的噪声源定位测试包括飞机发动机状态; 声觉测量,以及飞机飞过相位阵列时的位置、高度和速度。因为飞机产生的噪音在传输到地面麦克风的过程中会被大气削弱,因此我们还需要记录气象数据,例如风向、速度、温度和湿度。
使用LabVIEW和PXI进行东海大桥结构健康监测
概述:部署一个坚固的PXI系统来监测环境对大桥产生的影响,进行实时计算以确定大桥的即时结构健康状况,并将数据储存,进行离线处理。

东海大桥作为中国跨海大桥,耗资12亿美元,于2005年完成通车。六车道的大桥将上海与洋山岛连在了一起,大桥全长32.5千米,并设计成S形以避开台风和海浪区,以车辆安全行驶。
我们搭建了一个结构健康监测(SHM)系统,它能够提供大量的数据来评估大桥损坏和退化程度、结构性能状况、对于突发性灾难的反应。利用这些数据可以对桥梁的设计和建造技术进行研究。
我们使用基于NI PXI的数据采集系统,源于其良好的坚固性和小巧的体积,适用于放置在大桥的保护区域中。事实证明,系统在安装完毕后成功地克服了大桥所遇到的湿度、灰尘、震动和化学腐蚀等各种难题。使用LabVIEW,工程师能够进行重要的实时分析,同时,能够对大桥上大量的传感器产生的信号进行离线处理。
硬件系统设置
对东海大桥实施监控需要使用超过500个传感器,在大桥每段都放置了加速度计和FBG光学传感器,来采集环境激励所引起的频率响应。同时,大桥还配备了风速仪和压式传感器,以记录频率响应所对应的环境条件。大桥每一段还设有一个数据采集站,配备NI PXI-4472B动态信号采集卡(DSA)从周围的加速度计采集相关数据。
另外,我们使用NI PXI-6652同步模块和 NI PXI-6602计数器模块,以及NI PXI-8187机箱控制器,来解决数据采集的同步问题。
在对东海大桥上的系统进行设置时,我们给每个PXI机箱都安装了一个GPS,使用脉冲每秒(PPS)和IRIG-B定时信号分别进行信号同步和时间标识。PPS每秒传输一千万脉冲,为每个机箱提供采样基准时钟。这使得采集模块可以在100纳秒的分辨率下对大桥上所有设备的通道实现同步采样。

相关推荐产品

留言板

  • LabVIEW开发LabVIEW项目LabVIEW编程LabVIEW解密西安中航飞机研究院
  • 价格商品详情商品参数其它
  • 提交留言即代表同意更多商家联系我
北京瀚文网星科技有限责任公司为你提供的“河北有经验的LabVIEW开发编程,LabVIEW解密”详细介绍,包括西安中航飞机研究院价格、型号、图片、厂家等信息。如有需要,请拨打电话:13691203761。不是你想要的产品?点击发布采购需求,让供应商主动联系你。
“河北有经验的LabVIEW开发编程,LabVIEW解密”信息由发布人自行提供,其真实性、合法性由发布人负责。交易汇款需谨慎,请注意调查核实。